WOW it WORKS | ornithopter continuation

wow it works ornithopter

This is part 2 of the Ornithopter project . In part 1 , we managed to build a flapping wing ornithopter using straws , foams , wires and tapes . The ornithopter could not achieve flight though . We identified the problems and continue to work to improve the ornithopter in part 2 . And this is the report for part 2 . And yes , we manage to get little “ORNY” flying .. well a good few seconds of flight !! Its a lot better than previous . Tough project though , but we made it !!

Ornithopter | The problems in part 1

In part 1 we identified 2 major problems . Though we very much wanted to use recycled material , but to get a flying ornithopter , we have to get the right material in order to achieve flight . So here is the list of problems we had earlier on part 1 and the recommendations or solutions that we have in part 2 of this ornithopter project

  • Straws . They are just not strong enough though we used tougher straws from Yakult , the Japanese probiotic milk drink products . With normal household rubberbands , the straws bend under severe stress when we wound up the rubberbands . So we have to explore balsa wood which we did . We use different dimension balsa wood for different areas of the ornithopter .
  • Household rubberbands . They are not thick enough and therefore may not be able to provide sufficient force to turn the crank and to move the “wings” of the ornithopter .  Some hobby shops do sell special rubberbands but those that we used , we have to trim the thickness of the rubberbands by half. Alternatively , we can also source rubberbands used on trousers .

Ornithopter | Parts ,  material and dimensions

Here is the list of parts and their dimensions used on part 2 of the ornithopter .

wow it works


wow it works ornithopterwow it works ornithopter

wow it works ornithopterwow it works ornithopter

Ornithopter | The problems in part 2

As we start to build a flying ornithopter , more problems surface . Here are some of them

  • Choice of glue . Putting the balsa wood together was tough as not only was the wood thin with small surface area , it also has to withstand  the stresses imposed by the rubberbands and also the crashes . So choose a glue that is strong enough that can hold the wood together . In our case , we also had aluminium tubing , used for the crank , that we need to stick onto the balsa wood . So type of glue used is important .
  • Balsa wood . We use balsa wood because it is light and stronger than straws . We have to use different dimension balsa wood  though . For the motor shaft , its needs to be thicker for its needs  to withstand the stress caused by the wound up rubberband . The front connector is thicker to allow more surface area to glue and to secure the aluminium tubing . The wing spars balsa wood are specially selected to  be as light as possible but present enough area to stick the foam onto it . As for the back connector , we tried a design without this back connector to save some weight , but with the wings mounted onto the top wing shaft , the wing shaft just could not take the stress alone . So we had to have this back connector to spread the stress .
  • Rubberbands. Household bands will not do and to create sufficient force to move the crank and the wings , the rubberbands needs to be thicker . But thicker rubberband may not allow us to wind many turns and in our design , it allows a maximum of about 30 turns  . This means that the ornithopter will have a very short flight duration lasting less than 30 flaps . More than 30 turns , the balsa wood and the aluminium tubing holding the crank would experience severe stress
  • Wing flaps . We taped and glued  different types of plastic , paper and foam thickness onto the wing spars to create the wing flaps . Foam of 0.7mm thickness was best because it can retain the shape and form of the wings better than any other material . A 1.0mm foam was simply too tight for the ornithopter  and does not allow the crank to turn freely . It is very important to ensure that the wing flaps is not stressed too tightly especially during the downward movement
  • Wing root . There are 2 ways to secure the wing root . Its either at the top or at the sides of the wing top shaft . We prefer securing the wing root using Yakult straws at the side so that the “Z” shaped wire does not interfere and damaged the foam during flight . This also allows us to glue the entire middle section of the wing flap onto the top wing shift .
  • Aluminium tubing and the metal wire crank . We choose aluminium for the tubing for it is light . Plastic tubing may not last as it will be constantly being rubbed  by the metal crank . This aluminium tubing  is a important piece of the ornithopter because the crank at one end will be pulled by the rubberband leaving the “bend” area of the crank rotating and rubbing against the tubing . If there is a lot of friction in this area , then the crank will not turn smoothly . It is a good practice to add some lubrication to this area to allow the smoother turning of the crank . Also maintain parallel or perpendicular of the crank relative to the other areas of the ornithopter to minimise stress build up . The crank is also the area that will  be easily bend due to crashes or head on collisions experienced by  the ornithopter  .
  • Conrods . The conrods dimensions are dependent very much on the 2 metal Z-shaped  wires “bend length” of the crank and the wings spars . In our case , we find that 1.5cm and 2.0cm works well and the conrod must be able to prop the wings up , above its horizontal wing top shaft

Ornithopter | how to achieve longer flight ?

To achieve longer flight duration , we will need a longer rubber band and therefore a longer motor shaft . This means more back weight added to the ornithopter .  We will also need to increase the wing span to create more lift  but we need to ensure that the rubber band is able to propel the wings sufficiently . What this means is that we need to ensure that the ornithopter is able to create sufficient lift over its entire weight .

Ornithopter | What else needs improvement ?

We certainly would like to add a rudder so that the ornithopter can achieve a straight line flight . We believe that we need to improve the wing design by having a sturdy structure to shape the wings . Well , that’s about it for the ornithopter for the time being !!




SEO Powered By SEOPressor